Math 308N

Your Name

Your Signature

Student ID #

Honor Statement

I agree to complete this exam without unauthorized assistance from any person, materials, or device.

Signature: _____

- Turn off all cell phones, pagers, radios, mp3 players, and other similar devices.
- This exam is closed book. You may use one $8.5'' \times 11''$ sheet of handwritten notes (both sides OK). Do not share notes. No photocopied materials are allowed.
- Calculators are not allowed.
- In order to receive credit, you must **show all of your work**. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- If you need more room, use the backs of the pages and indicate that you have done so.
- Raise your hand if you have a question.
- This exam has 6 pages, plus this cover sheet. Please make sure that your exam is complete.

Question	Points	Score
1	20	
2	10	
3	10	
4	10	
Spicy Bonus	6	
Total	50	

1. (20 points) Indicate whether the given statement is true or false (2 pts) and give justification as to why it is true or false(2 pts).

a) [4 pts] Let $\{\vec{u_1}, \vec{u_2}, \vec{u_3}\}$ be a linearly independent set in \mathbb{R}^3 , then the set $\{c\vec{u_1}, c\vec{u_2}, c\vec{u_3}\}$ is linearly independent, for all scalars $c \neq 0$.

b) [4 pts] There exists a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}$ such that

$$T\left(\begin{bmatrix} 1\\0\\1 \end{bmatrix} \right) = 3 \text{ and } T\left(\begin{bmatrix} 4\\0\\4 \end{bmatrix} \right) = 9$$

c) [4 pts] If $\vec{u_1}, \vec{u_2}$, and \vec{v} are vectors in \mathbb{R}^3 , and \vec{v} is in span{ $\vec{u_1}, \vec{u_2}$ }, then { $\vec{u_1}, \vec{u_2}, \vec{v}$ } can never span \mathbb{R}^3 .

Give an example of each of the following. If it is not possible write "NOT POSSIBLE". No justification is needed if it is not possible.

d) [2 pt] A linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$, given by $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$, which reflects the unit square about the *x*-axis. (Note: Take the unit square to lie in the first quadrant. Giving the matrix of *T*, if it exists, is a sufficient answer).

e) [2 pt] A set of 4 vectors in \mathbb{R}^3 that spans \mathbb{R}^3 and is linearly **dependent**.

f) [2 pt] 3 linearly independent vectors $\vec{u_1}, \vec{u_2}, \vec{u_3}$ satisfying the equation $2\vec{u_1} + 3\vec{u_2} - 4\vec{u_3} = \vec{0}$.

g) [2 pts] A **homogeneous** linear system with strictly more variables than equations, having exactly one solution.

- 2. (10 points) Consider the following linear system with *a* and *b* nonzero constants.
 - $\begin{cases} x_1 3x_2 + x_3 = 4\\ 2x_1 8x_3 = -2\\ -6x_1 + 6x_2 + ax_3 = b \end{cases}$

a) [5 pts] For what values of a and b does the system have infinitely many solutions?

a) [5 pts] Give an example of *a* and *b* where the system has exactly one solution.

- 3. (10 points) Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be given by $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} -x_1 + 3x_2 + 2x_3 \\ 4x_1 12x_2 8x_3 \end{bmatrix}$.
 - a) [3pts] Determine the matrix associated to T. That is, find the matrix A such that $T(\vec{x}) = A\vec{x}$.

b) [3 pts] Is T one-to one? Explain your answer.

c) [4pts] Is T onto? If not, find a vector not in the range of T.

4. (10 points) a) [4 pts] Let
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$. Show that the set $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ spans \mathbb{R}^3 .

b) [4 pts] Express the vector
$$\mathbf{v} = \begin{bmatrix} 3 \\ 5 \\ 11 \end{bmatrix}$$
 as a linear combination of the vectors from the previous part.

c) [2 pts] Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation such that

$$T(\mathbf{u}_1) = \begin{bmatrix} 1\\ 3 \end{bmatrix}, T(\mathbf{u}_2) = \begin{bmatrix} 2\\ 0 \end{bmatrix}, T(\mathbf{u}_3) = \begin{bmatrix} 1\\ -1 \end{bmatrix}$$

Compute $T(\mathbf{v})$ (where \mathbf{v} is the same vector as in part b).

Super Spicy Bonus Question

5. (6 points) a) [4pts] Let $f(x) = ax^2 + bx + c$ denote an arbitrary polynomial of degree 2, with constants a, b, and c. To each such polynomial, associate the vector

$$ax^2 + bx + c \leftrightarrow \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Let *T* be the linear transformation given by T(f(x)) = f'(x). In other words, *T* is the linear transformation that eats a degree 2 polynomial and spits out its derivative (Yes it is linear!). Find the matrix corresponding to *T*. (Hint: Remember that if we are given a linear transformation *T* as above, its matrix is completely determined by $T(\mathbf{e}_i)$, i.e. $T(\mathbf{x}) = A\mathbf{x}$ where $A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ T(\mathbf{e}_3)]$

b) [2 pts] Is T one-to one? Is it onto? Explain your answer.